Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
MethodsX ; 12: 102712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660038

RESUMO

Sulfate is the fourth most abundant anion in circulation. Despite being an essential nutrient for healthy growth and development, sulfate is not routinely measured in clinical settings. In research settings, animal studies have shown that hyposulfatemia and hypersulfaturia are associated with adverse developmental outcomes. Those findings have increased interest in measuring plasma and urine sulfate levels. In this study, we describe a modified assay to measure sulfate in low volumes of plasma and urine. •A streamlined microassay to measure sulfate levels using a microtiter plate format was developed.•To determine the robustness of the assay, this method assessed reagent stability and concentrations, as well as absorbance at different wavelengths and following a range of incubation times.•The optimized microassay was used to measure sulfate level in pig plasma and urine samples, which were compared to a validated ion chromatography method.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38651949

RESUMO

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed error-prone and lack architectural context; or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine learning model (BiliQML) able to quantify biliary forms in the liver of anti-Keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F-score of 0.87. Application of BiliQML on seven separate cholangiopathy models; genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, Albumin-CRE; ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition), allowed for a means to validate the capabilities, and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models indicate a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much needed morphologic context to standard immunofluorescence - based histology, and provides clinical and basic-science researchers a novel tool for the characterization of cholangiopathies.

3.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405928

RESUMO

Bile acids (BAs) are gastrointestinal metabolites that serve dual functions in lipid absorption and cell signaling. BAs circulate actively between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with intestinal cells in vivo remain ill-defined. Through multi-site sampling of nearly 100 BA species in individual wild type mice, as well as mice lacking the ileal BA transporter, Asbt/Slc10a2, we calculate the ileal BA pool in fasting C57BL/6J mice to be ~0.3 µmoles/g. Asbt-mediated transport accounts for ~80% of this pool and amplifies size, whereas passive absorption explains the remaining ~20%, and generates diversity. Accordingly, ileal BA pools in mice lacking Asbt are ~5-fold smaller than in wild type controls, enriched in secondary BA species normally found in the colon, and elicit unique transcriptional responses in cultured ileal explants. This work quantitatively defines ileal BA pools in mice and reveals how BA dysmetabolism can impinge on intestinal physiology.

5.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
6.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G446-G452, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697930

RESUMO

Intestinal inflammation and diarrhea are often associated with SARS-CoV-2 infection. The angiotensin converting enzyme 2 (ACE2) receptor plays a key role in SARS-CoV-2 pathogenesis, facilitating entry of the virus into epithelial cells, while also regulating mucosal inflammatory responses. Here, we investigated roles for the nuclear bile acid receptor farnesoid X receptor (FXR) in regulating ACE2 expression and virally mediated inflammatory responses in intestinal epithelia. Human colonic or ileal enteroids and cultured T84 and Caco-2 monolayers were treated with the FXR agonists, obeticholic acid (OCA) or GW4064, or infected with live SARS-CoV-2 (2019-nCoV/USA_WA1/2020). Changes in mRNA, protein, or secreted cytokines were measured by qPCR, Western blotting, and ELISA. Treatment of undifferentiated colonic or ileal enteroids with OCA increased ACE2 mRNA by 2.1 ± 0.4-fold (n = 3; P = 0.08) and 2.3 ± 0.2-fold (n = 3; P < 0.05), respectively. In contrast, ACE2 expression in differentiated enteroids was not significantly altered. FXR activation in cultured epithelial monolayers also upregulated ACE2 mRNA, accompanied by increases in ACE2 expression and secretion. Further experiments revealed FXR activation to inhibit IL-6 release from both Caco-2 cells infected with SARS-CoV-2 and T84 cells treated with the viral mimic, polyinosinic:polycytidylic acid, by 46 ± 12% (n = 3, P < 0.05) and 35 ± 6% (n = 8; P < 0.01), respectively. By virtue of its ability to modulate epithelial ACE2 expression and inhibit virus-mediated proinflammatory cytokine release, FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2.NEW & NOTEWORTHY Activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), specifically upregulates ACE2 expression in undifferentiated colonic epithelial cells and inhibits virus-induced proinflammatory cytokine release. By virtue of these actions FXR represents a promising target for the development of new approaches to prevent intestinal manifestations of SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interleucina-6 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Células CACO-2 , Citocinas , Interleucina-6/metabolismo , RNA Mensageiro , SARS-CoV-2 , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
BMJ Open ; 13(7): e076130, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37451710

RESUMO

INTRODUCTION: Antenatal maternal magnesium sulfate (MgSO4) administration is a proven efficacious neuroprotective treatment reducing the risk of cerebral palsy (CP) among infants born preterm. Identification of the neuroprotective component with target plasma concentrations could lead to neonatal treatment with greater efficacy and accessibility. METHODS AND ANALYSIS: This is a prospective observational cohort study, in three tertiary Australian centres. Participants are preterm infants, irrespective of antenatal MgSO4 exposure, born in 2013-2020 at 24+0 to 31+6 weeks gestation, and followed up to 2 years corrected age (CA) (to September 2023). 1595 participants are required (allowing for 17% deaths/loss to follow-up) to detect a clinically significant reduction (30% relative risk reduction) in CP when sulfate concentration at 7 days of age is 1 SD above the mean.A blood sample is collected on day 7 of age for plasma sulfate and magnesium measurement. In a subset of participants multiple blood and urine samples are collected for pharmacokinetic studies, between days 1-28, and in a further subset mother/infant blood is screened for genetic variants of sulfate transporter genes.The primary outcome is CP. Surviving infants are assessed for high risk of CP at 12-14 weeks CA according to Prechtl's Method to assess General Movements. Follow-up at 2 years CA includes assessments for CP, cognitive, language and motor development, and social/behavioural difficulties.Multivariate analyses will examine the association between day 7 plasma sulfate/magnesium concentrations with adverse neurodevelopmental outcomes. A population pharmacokinetic model for sulfate in the preterm infant will be created using non-linear mixed-effects modelling. ETHICS AND DISSEMINATION: The study has been approved by Mater Misericordiae Ltd Human Research Ethics Committee (HREC/14/MHS/188). Results will be disseminated in peer-reviewed journal publications, and provided to the funding bodies. Using consumer input, a summary will be prepared for participants and consumer groups.


Assuntos
Paralisia Cerebral , Doenças do Prematuro , Fármacos Neuroprotetores , Nascimento Prematuro , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Austrália , Paralisia Cerebral/prevenção & controle , Estudos de Coortes , Retardo do Crescimento Fetal , Lactente Extremamente Prematuro , Magnésio , Fármacos Neuroprotetores/uso terapêutico , Estudos Observacionais como Assunto , Sulfatos
8.
IEEE J Biomed Health Inform ; 27(10): 5042-5053, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498761

RESUMO

Fidgety movements occur in infants between the age of 9 to 20 weeks post-term, and their absence are a strong indicator that an infant has cerebral palsy. Prechtl's General Movement Assessment method evaluates whether an infant has fidgety movements, but requires a trained expert to conduct it. Timely evaluation facilitates early interventions, and thus computer-based methods have been developed to aid domain experts. However, current solutions rely on complex models or high-dimensional representations of the data, which hinder their interpretability and generalization ability. To address that we propose [Formula: see text], a method that detects fidgety movements and uses them towards an assessment of the quality of an infant's general movements. [Formula: see text] is true to the domain expert process, more accurate, and highly interpretable due to its fine-grained scoring system. The main idea behind [Formula: see text] is to specify signal properties of fidgety movements that are measurable and quantifiable. In particular, we measure the movement direction variability of joints of interest, for movements of small amplitude in short video segments. [Formula: see text] also comprises a strategy to reduce those measurements to a single score that quantifies the quality of an infant's general movements; the strategy is a direct translation of the qualitative procedure domain experts use to assess infants. This brings [Formula: see text] closer to the process a domain expert applies to decide whether an infant produced enough fidgety movements. We evaluated [Formula: see text] on the largest clinical dataset reported, where it showed to be interpretable and more accurate than many methods published to date.

9.
Nat Med ; 29(4): 936-949, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076741

RESUMO

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos do Sono-Vigília , Criança , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Lipidômica , Qualidade de Vida , Austrália/epidemiologia , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/complicações , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
10.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36787187

RESUMO

The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion. Chloride channels in biliary epithelial cells provide the driving force for biliary secretion. In mouse large cholangiocytes, norUDCA potently stimulated chloride currents that were blocked by siRNA silencing and pharmacological inhibition of calcium-activated chloride channel transmembrane member 16A (TMEM16A) but unaffected by ASBT inhibition. In agreement, blocking intestinal bile acid reabsorption by coadministration of an ASBT inhibitor or bile acid sequestrant did not impact norUDCA stimulation of bile flow in WT mice. The results indicate that these major bile acid transporters are not directly involved in the absorption, cholehepatic shunting, or choleretic actions of norUDCA. Additionally, the findings support further investigation of the therapeutic synergy between norUDCA and ASBT inhibitors or bile acid sequestrants for cholestatic liver disease.


Assuntos
Bicarbonatos , Colagogos e Coleréticos , Camundongos , Animais , Bicarbonatos/metabolismo , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Ácidos e Sais Biliares , Proteínas de Membrana Transportadoras
11.
Hepatology ; 77(4): 1274-1286, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645229

RESUMO

BACKGROUND AND AIMS: A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice. APPROACH AND RESULTS: CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene. Pkd1l1Fl/Fl cross-bred with alpha-fetoprotein-Cre expressing mice to generate a liver-specific intrahepatic Pkd1l1 -deficient model (LKO). From embryonic day 18 through week 30, control ( Fl/Fl ) and LKO mice were evaluated with standard serum chemistries and liver histology. At select ages, tissues were analyzed using RNA sequencing, immunofluorescence, and electron microscopy with a focus on biliary structures, peribiliary inflammation, and fibrosis. Bile duct ligation for 5 days of Fl/Fl and LKO mice was followed by standard serum and liver analytics. Histological analyses from perinatal ages revealed delayed biliary maturation and reduced primary cilia, with progressive cholangiocyte proliferation, peribiliary fibroinflammation, and arterial hypertrophy evident in 7- to 16-week-old LKO versus Fl/Fl livers. Following bile duct ligation, cholangiocyte proliferation, peribiliary fibroinflammation, and necrosis were increased in LKO compared with Fl/Fl livers. CONCLUSIONS: Bile duct ligation of the Pkd1l1 -deficient mouse model mirrors several aspects of the intrahepatic pathophysiology of biliary atresia in humans including bile duct dysmorphogenesis, peribiliary fibroinflammation, hepatic arteriopathy, and ciliopathy. This first genetically linked model of biliary atresia, the Pkd1l1 LKO mouse, may allow researchers a means to develop a deeper understanding of the pathophysiology of this serious and perplexing disorder, including the opportunity to identify rational therapeutic targets.


Assuntos
Atresia Biliar , Ciliopatias , Humanos , Animais , Camundongos , Lactente , Atresia Biliar/patologia , Fígado/patologia , Ductos Biliares/patologia , Fibrose , Ciliopatias/complicações , Ciliopatias/patologia , Proteínas de Membrana
12.
Mol Cell Biochem ; 478(8): 1771-1777, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36566486

RESUMO

Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.


Assuntos
Deficiência de Vitamina D , Vitamina D , Gravidez , Feminino , Criança , Humanos , Camundongos , Animais , Regulação da Expressão Gênica , Deficiência de Vitamina D/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfatos/metabolismo
13.
JPGN Rep ; 3(3)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36148443

RESUMO

Objectives: A bile acid homeostasis disorder was suspected in 2 siblings and their second cousin who presented in infancy with fat malabsorption, severe fat-soluble vitamin deficiency, rickets, and mild liver involvement. Our aims were to identify the genetic cause, describe the disease, and evaluate the response to ursodeoxycholic acid (UDCA) treatment. Methods: Whole exome sequencing, immunohistochemistry of duodenal biopsies and candidate variant testing in a cell-based model was performed. Fecal fat excretion, serum bile acids, 7α-hydroxy-4-cholesten-3-one (C4), and fibroblast growth factor 19 (FGF19) were quantified in both siblings on and off UDCA treatment. Results: A novel homozygous variant of SLC51A, which encodes the bile acid carrier organic solute transporter (OST)-α, was identified in all affected children. OSTα protein expression was readily detected by immunohistochemistry in duodenum of pediatric control subjects but not in the affected siblings. The siblings had low serum levels of bile acids and C4 and high serum levels of FGF19 consistent with repression of hepatic bile acid synthesis. On treatment with UDCA, fecal fat excretion was reduced and serum levels of C4, FGF19, and liver enzymes normalized. Conclusions: We report an apparent deficiency of OSTα associated with early onset fat malabsorption and mild liver involvement. The clinical presentation partially overlaps previous reports for 3 patients with OSTα or OSTß deficiency and extends the clinical spectrum associated with loss of SLC51A expression. Our data suggest that repression of hepatic bile acid synthesis contributes to fat malabsorption in OSTα-OSTß deficiency but can be partly reversed with UDCA treatment.

14.
Sci Rep ; 12(1): 15838, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151131

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with increased oxidative stress that leads to hepatocyte and mitochondrial damage. In this study we investigated the mechanisms involved in the induction of oxidative stress and impairment of mitochondrial quality control and mitophagy in hepatocytes by the saturated fatty acid palmitate and Western diet feeding in mice and if their harmful effects could be reversed by the neurotrophic factor glial cell derived neurotrophic factor (GDNF). Western diet (WD)-feeding increased hepatic lipid peroxidation in control mice and, in vitro palmitate induced oxidative stress and impaired the mitophagic clearance of damaged mitochondria in hepatocytes. This was accompanied by reductions in hepatocyte sirtuin 3 (SIRT3) deacetylase activity, gene expression and protein levels as well as in superoxide dismutase enzyme activity. These reductions were reversed in the liver of Western diet fed GDNF transgenic mice and in hepatocytes exposed to palmitate in the presence of GDNF. We demonstrate an important role for Western diet and palmitate in inducing oxidative stress and impairing mitophagy in hepatocytes and an ability of GDNF to prevent this. These findings suggest that GDNF or its agonists may be a potential therapy for the prevention or treatment of NAFLD.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Sirtuína 3 , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Palmitatos/efeitos adversos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
15.
J Lipid Res ; 63(9): 100261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934110

RESUMO

Cyp2c70 is the liver enzyme in rodents responsible for synthesis of the primary 6-hydroxylated muricholate bile acid (BA) species. Cyp2c70 KO mice are devoid of protective, hydrophilic muricholic acids, leading to a more human-like BA composition and subsequent cholestatic liver injury. Pharmacological inhibition of the ileal BA transporter (IBAT) has been shown to be therapeutic in cholestatic models. Here, we aimed to determine if IBAT inhibition with SC-435 is protective in Cyp2c70 KO mice. As compared to WT mice, we found male and female Cyp2c70 KO mice exhibited increased levels of serum liver injury markers, and our evaluation of liver histology revealed increased hepatic inflammation, macrophage infiltration, and biliary cell proliferation. We demonstrate serum and histologic markers of liver damage were markedly reduced with SC-435 treatment. Additionally, we show hepatic gene expression in pathways related to immune cell activation and inflammation were significantly upregulated in Cyp2c70 KO mice and reduced to levels indistinguishable from WT with IBAT inhibition. In Cyp2c70 KO mice, the liver BA content was significantly increased, enriched in chenodeoxycholic acid, and more hydrophobic, exhibiting a hydrophobicity index value and red blood cell lysis properties similar to human liver BAs. Furthermore, we determined IBAT inhibition reduced the total hepatic BA levels but did not affect overall hydrophobicity of the liver BAs. These findings suggest that there may be a threshold in the liver for pathological accretion of hydrophobic BAs and reducing hepatic BA accumulation can be sufficient to alleviate liver injury, independent of BA pool hydrophobicity.


Assuntos
Colestase , Fígado , Animais , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte , Ácido Quenodesoxicólico/metabolismo , Colestase/metabolismo , Óxidos N-Cíclicos , Feminino , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Glicoproteínas de Membrana , Camundongos , Tropanos
16.
Front Mol Biosci ; 9: 866196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495624

RESUMO

Sulfate is an important nutrient that modulates a diverse range of molecular and cellular functions in mammalian physiology. Over the past 2 decades, animal studies have linked numerous sulfate maintenance genes with neurological phenotypes, including seizures, impaired neurodevelopment, and behavioral abnormalities. Despite sulfation pathways being highly conserved between humans and animals, less than one third of all known sulfate maintenance genes are clinically reportable. In this review, we curated the temporal and spatial expression of 91 sulfate maintenance genes in human fetal brain from 4 to 17 weeks post conception using the online Human Developmental Biology Resource Expression. In addition, we performed a systematic search of PubMed and Embase, identifying those sulfate maintenance genes linked to atypical neurological phenotypes in humans and animals. Those findings, together with a search of the Online Mendelian Inheritance in Man database, identified a total of 18 candidate neurological dysfunction genes that are not yet considered in clinical settings. Collectively, this article provides an overview of sulfate biology genes to inform future investigations of perturbed sulfate homeostasis associated with neurological conditions.

17.
Transl Psychiatry ; 12(1): 66, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177588

RESUMO

The 1.6 Mb 3q29 deletion is associated with developmental and psychiatric phenotypes, including a 40-fold increased risk for schizophrenia. Reduced birth weight and a high prevalence of feeding disorders in patients suggest underlying metabolic dysregulation. We investigated 3q29 deletion-induced metabolic changes using our previously generated heterozygous B6.Del16+/Bdh1-Tfrc mouse model. Animals were provided either standard chow (STD) or high-fat diet (HFD). Growth curves were performed on HFD mice to assess weight change (n = 30-50/group). Indirect calorimetry and untargeted metabolomics were performed on STD and HFD mice to evaluate metabolic phenotypes (n = 8-14/group). A behavioral battery was performed on STD and HFD mice to assess behavior change after the HFD challenge (n = 5-13/group). We found that B6.Del16+/Bdh1-Tfrc animals preferentially use dietary lipids as an energy source. Untargeted metabolomics of liver tissue showed a strong sex-dependent effect of the 3q29 deletion on fat metabolism. A HFD partially rescued the 3q29 deletion-associated weight deficit in females, but not males. Untargeted metabolomics of liver tissue after HFD revealed persistent fat metabolism alterations in females. The HFD did not affect B6.Del16+/Bdh1-Tfrc behavioral phenotypes, suggesting that 3q29 deletion-associated metabolic and behavioral outcomes are uncoupled. Our data suggest that dietary interventions to improve weight phenotypes in 3q29 deletion syndrome patients are unlikely to exacerbate behavioral manifestations. Our study also highlights the importance of assessing sex in metabolic studies and suggests that mechanisms underlying 3q29 deletion-associated metabolic phenotypes are sex-specific.


Assuntos
Deficiência Intelectual , Esquizofrenia , Animais , Criança , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Dieta Hiperlipídica , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Esquizofrenia/complicações , Esquizofrenia/genética
18.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943976

RESUMO

Niemann-Pick C1-like 1 (NPC1L1) mediates intestinal uptake of dietary and biliary cholesterol and is the target of ezetimibe, a cholesterol absorption inhibitor used to treat hypercholesterolemia. Genetic deletion of NPC1L1 or ezetimibe treatment protects mice from high-fat diet (HFD)-induced obesity; however, the molecular mechanisms responsible for this therapeutic benefit remain unknown. A major metabolic fate of cholesterol is its conversion to bile acids. We found that NPC1L1 knockout (L1-KO) mice fed an HFD had increased energy expenditure, bile acid pool size, and fecal bile acid excretion rates. The elevated bile acid pool in the HFD-fed L1-KO mice was enriched with tauro-ß-muricholic acid. These changes in the L1-KO mice were associated with reduced ileal mRNA expression of fibroblast growth factor 15 (FGF15) and increased hepatic mRNA expression of cholesterol 7α-hydroxylase (Cyp7A1) and mitochondrial sterol 27-hydroxylase (Cyp27A1). In addition, mRNA expression of the membrane bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) and type 2 iodothyronine deiodinase (Dio2) were elevated in brown adipose tissue of L1-KO mice, which is known to promote energy expenditure. Thus, altered bile acid homeostasis and signaling may play a role in protecting L1-KO mice against HFD-induced obesity.


Assuntos
Ácidos e Sais Biliares/genética , Fatores de Crescimento de Fibroblastos/genética , Íleo/metabolismo , Proteínas de Membrana Transportadoras/genética , Obesidade/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colesterol/genética , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Humanos , Íleo/efeitos dos fármacos , Íleo/patologia , Iodeto Peroxidase/genética , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/genética
19.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
20.
Br J Pharmacol ; 178 Suppl 1: S412-S513, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529826

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...